Doktor Teknik Elektro Fakultas Teknik Universitas Indonesia (FTUI) Ernia Susana mengembangkan metode baru untuk memantau kadar gula darah tanpa menggunakan jarum.

"Metode ini memanfaatkan teknologi cahaya yang disebut sinyal Photoplethysmography (PPG) dan kecerdasan buatan atau Artificial Intelligence (AI) yang diharapkan dapat memantau kadar gula darah pasien diabetes dengan lebih mudah, nyaman, dan terjangkau," katanya di Kampus UI Depok, Kamis.

Ia mengatakan teknik PPG mengukur perubahan volume darah di pembuluh darah menggunakan cahaya. Tantangan terbesar dari metode ini adalah gangguan sinyal akibat gerakan dan faktor lainnya.

Untuk mengatasi masalah ini, ia menggunakan teknik analisis waktu-frekuensi (Time Frequency Analysis/TFA) yang berbasis pada transformasi Fourier jangka pendek (Short Time Fourier Transform/STFT) untuk meningkatkan kualitas sinyal.

Baca juga: Doktor FTUI kembangkan inovasi baru kamera thermal

Dalam penelitian tersebut,  Ernia melakukan tiga tahap, yaitu Pengembangan Sistem Pemantauan, Implementasi Teknik TFA, dan Pengujian pada Data Sekunder.

Dalam mengembangkan sistem pemantauan, ia menggabungkan filter elektronik dan AI untuk menciptakan sistem pemantauan gula darah yang lebih akurat. Pada tahap ini digunakan data dari 80 orang dewasa yang dikumpulkan selama pandemi COVID-19. Model terbaik yang ditemukan adalah Ensemble Bagged Trees (EBTA) dengan akurasi 97,8 persen.

Kemudian Teknik TFA digunakan untuk meningkatkan kualitas sinyal yang dimasukkan ke model kecerdasan buatan. Dari hasil penelitian, model Support Vector Machine (SVM) mampu mencapai akurasi 91,3 persen dengan waktu pelatihan 9,25 detik, sedangkan model Bidirectional Long Short Term Memory (BLSTM) mencapai akurasi 87 persen dengan waktu pelatihan 15 detik.

Baca juga: Doktor FTUI: PFI salah satu skema pendanaan alternatif masyarakat berpendapatan tidak tetap

Erna menjelaskan pengembangan lebih lanjut dari penelitian ini menggunakan rekomendasi penggunaan algoritma deep learning berbasis BLSTM dengan teknik optimasi yang dapat meningkatkan akurasi dan mengurangi waktu pelatihan.

Selain itu penelitian ini juga menyarankan pengembangan aplikasi pemantauan BGL berbasis Android untuk pemrosesan data yang lebih cepat dan responsif.

Dekan FTUI Prof Heri Hermansyah menyampaikan pengembangan teknik pemantauan BGL non-invasif ini menawarkan solusi potensial untuk meningkatkan kepatuhan pasien dalam memantau kadar glukosa darah secara rutin.

Baca juga: Nyayu Aisyah meraih predikat doktor termuda FTUI

Dengan akurasi yang tinggi dan waktu pelatihan yang efisien, teknologi ini dapat menjadi alat penting dalam deteksi dini dan manajemen diabetes pada masa depan.

Penelitian lanjutan diharapkan dapat lebih mengoptimalkan teknologi ini melalui kombinasi algoritma dan pengembangan aplikasi berbasis perangkat mobile.

Pewarta: Feru Lantara

Editor : Naryo


COPYRIGHT © ANTARA News Megapolitan 2024